Rain Garden Site Selection and Design

Andrew Anderson, E.I.T.

Extension Associate Engineer

Biological & Agricultural Engineering

NCSU

Outline

- What to look for around your property
- How do the soils drain?
- Choosing a rain garden type
- Sizing RG
- Overflow/bypass

- Considerations
 - Topography
 - Downspouts
 - Ponding
 - Existing Landscape
- Constraints
 - Utilities
 - Soil Type
 - Water Table

Best Source of Water for your RG?

October 2014

Rain Garden Certification
October 2014

NC STATE UNIVERSITY

Rain Garden Location

Empowering People · Providing Solutions

Observe your yard during a rainfall event

Where does water flow from?

 Where does water travel to or collect?

- Place your garden between runoff source and destination
- We want to intercept water before it reaches surface waters or the storm drain network!

NC STATE UNIVERSITY

Identifying a RG Location

Integrate into existing landscaping

Locate Rain Garden with Topography in Mind to Minimize Digging and Berm Construction

Rain Garden Construction Sequencing

- Add garden after other construction is finished
- Take note of potential or active construction

Rain Garden Construction Sequencing

Rain Garden Location: Determine Constraints

- Locate wells, septic systems, and utilities
- Ask the owner (trust, but verify!)

Rain Garden Location: Site NC STATE UNIVERSITY **Constraints**

Stay away from utility lines

Locate utilities before digging

Rain Garden Location: Site Constraints

SITING GUIDELINES:

- > 10 ft from house crawl space or basement
 - NEVER uphill
- > 10 ft from wellhead
 - NEVER uphill
- > 25 ft downhill or laterally from septic system drain field
 - NEVER uphill
- In full to partial sun if possible

Infiltration Test

- Dig a 1-foot hole at 2-3 potential locations based on drainage, utilities, and landscape aesthetics
- Fill holes to top with water
- 3. Measure drainage time at each test hole
- 4. Repeat 2-3 times per hole
- 5. Record drainage times
- 6. Determine <u>longest</u> drain time for each hole
- 7. This rate determines type of rain garden

Infiltration Test

Evaluate Soils and Drainage

Signs of an impermeable soil

- Water remains in test pit three days after rainfall
- Ponded water on surface for extended periods
- Wetland soils grey matrix mixed with areas of brown color

Evaluate for Wetland Soils

Soil Test

- After installation
- Can now enter BMP code on soil test sheet
- Ensure good plant growth and quality
 - Determine lime requirements

Don't guess: Soil test

Soil Test Interpretation

Final Siting Considerations

- Get P.E. or RLA help for larger rain gardens, bioretention, or for steep slopes
- Don't concentrate runoff towards neighbors property
- Designed to capture first 1" of runoff
- Won't necessarily solve standing water or poor drainage
- Not a solution for curing increased stormwater runoff from additional developments uphill –
 - sediment filling a rain garden will cause clogging and kill plants

Rain Garden Types

Two major differences:

- 1. "Wetness"
- Plant selection

What drainage time is acceptable?

> 3 days Wetland Garden

3 options:

- 1) Look for another location.
- 2) Work with it! (Install a backyard wetland.)
- 3) Using soil media & under-drain. (\$\$\$)

A backyard wetland / raingarden combo!

Working with wet conditions

Pittsbor

Important!

The landowner/homeowner MUST know that at times, rain gardens will be very wet.

They can also be very dry.

Steps to sizing a rain garden:

- 1. Determine the watershed boundaries (i.e. "delineate")
- 2. Estimate the drainage area
- 3. "10/10" Method
- 4. Design the shape and size the weir

What is a watershed?

Delineate the watershed...smaller scale

Delineate the watershed...smaller scale

- Topography & Aerial photography
 - County GIS websites
- Laser level/survey
- Landscape characteristics

Calculate total watershed area.

- Mapping program
- By Hand
 - 1 adult pace ≈ 2.5 feet
 - Measuring tape
 - Aerial photograph
- Site visits should always be conducted.

Add More Watershed Area?

- Examine watershed at selected BMP location.....is there opportunity to increase drainage area?
 - Diversion berms?
 - Swales?
 - Pipes?
- Is there space for bigger BMPs?

Estimating Area

Your rain garden's drainage area consists of:
 Impervious Area

Estimating Area

 Your rain garden's drainage area consists of: <u>Pervious Area</u>

Sizing the Rain Garden

- Take 10% of impervious area draining to site
- Take 1% of pervious area
- Add the two together! Result is the optimal square feet of rain garden needed

Another way to think of it....

• Rain Garden Size (ft^2) = $(1\% \ of \ Pervious \ Watershed) + (10\% \ of \ Impervious \ Watershed)$

10% Impervious Area

1% Pervious Area

What Happens When It Fills Up?

Weirs: Key to Bypassing Extra Water

CROSS-SECTIONAL VIEW

Overflow Weirs

NO OTATE LIMIL/EDOLT

Weir vs.

Overflow Weir

Impervious Surface Area (ft²)	Overflow Weir Length (ft)
2000 or less	1.0
3000	1.5
4000	2.0
5000	2.5

An Example:

The rooftop for a house is 60ft by 60 ft. One downspout (there are 4 total) will be directed to the rain garden.

Approximately 500ft² of driveway will also drain to the rain garden.

With the "10 and 10" rule, what size should the rain garden be?

- 1. Determine watershed boundaries.
- 2. Estimate each type of contributing area

Roof area =
$$\frac{60 \times 60}{4}$$
 = 900ft^2

Driveway area = 500ft^2

Pervious area = 1000ft²

 $Impervious = 900 + 500 = 1,400 \text{ ft}^2$

- 3. Impervious x 10%
- 4. Pervious x 1%

$$(1,400 \text{ ft}^2 * 10\%) + (1,000 \text{ ft}^2 * 1\%) = 150 \text{ ft}^2$$

5. Set ponding depth at 10"

NC STATE UNIVERSITY

4. Choose rain garden dimensions

Effective Impervious Area	Rain Garden Surface Area (10" deep)	Potential Rain Garden Dimensions (ft x ft)
800 ft ²	80 ft ²	7x12, 8x10, 9x9
1000 ft ²	100 ft ²	7x15, 10x10
1200 ft ²	120 ft ²	8x15, 10x12
1400 ft ²	140 ft ²	7x20, 12x12
1500 ft ²	150 ft ²	10x15, 12x13
2000 ft ²	200 ft ²	10x20, 14x15
2500 ft ²	250 ft ²	10x25, 13x20
3000 ft ²	300 ft ²	15x20, 12x25
4000 ft ²	400 ft ²	20x20, 40x10

Empowering People · Providing Solutions

