

Soil Properties and Bed Preparation

Soil & Nutrient Management in Vegetable Gardens

Module I

Matt Jones

Horticulture Extension Agent NC Cooperative Extension - Chatham County Center

NC STATE EXTENSION

COUNTY CENTERS TOPICS GIVE NOW

https://covid19.ces.ncsu.edu/

Vegetable Gardening Resources

• For this class: https://go.ncsu.edu/chathamveggies

Gardening Portal: https://gardening.ces.ncsu.edu/

Extension Gardener Portal:
 https://extensiongardener.ces.ncsu.edu/

Subscribe to the Chatham Gardener Newsletter

- Sustainable gardening information
- Monthly articles written by Master GardenerSM Volunteers
- Upcoming classes and events
- To subscribe: <u>http://go.ncsu.edu/subscribecg</u>

Extension Gardener Handbook

- Available online for FREE
 https://content.ces.ncsu.edu/extension-gardener-handbook
- Full-color, hardback copy available from UNC Press (\$60)
- See chapters on Soils, Vegetable Gardening, Organic Gardening, and Composting

Upcoming Workshops

Many more Extension Gardener workshops to come!

https://go.ncsu.edu/chathamgardening

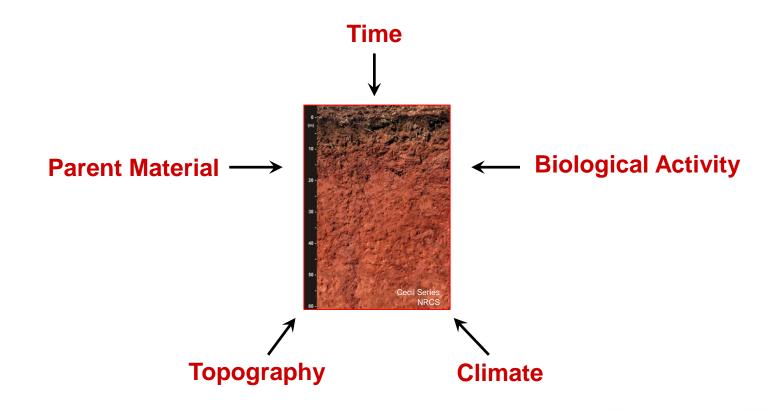
More will move online as the pandemic proceeds

Workshop	Date (2020)	Time	Cost
Tree Identification in Winter	Jan. 21	9:30 a.m noon	\$10
Tree Identification in Winter	Jan. 22	6-8:30 p.m.	\$10
Growing Vegetables from Seed	Feb. 5	6-8:30 p.m.	\$10
Growing Vegetables from Seed	Feb. 6	9:30 a.m noon	\$10
Soil & Nutrient Management in Vegetable Gardens	Mar. 18	9:30 a.m noon	\$6
Soil & Nutrient Management in Vegetable Gardens	Mar. 19	6-8:30 p.m.	\$6
Warm Season Crops for Vegetable Gardens	Apr. 7	9:30 a.m noon	\$6
Warm Season Crops for Vegetable Gardens	Apr. 8	6-8:30 p.m.	\$6
Pest, Disease, & Weed Management in Vegetable Gardens	Jun. 2	9:30 a.m noon	\$6
Pest, Disease, & Weed Management in Vegetable Gardens	Jun. 4	6-8:30 p.m.	\$6
Carolina Lawn Care	Jun. 9	6-8:30 p.m.	\$6
Carolina Lawn Care	Jun. 10	9:30 a.m noon	\$6
What's the Matter with my 'Mater?	Jul. 7	9:30 a.m noon	\$6
What's the Matter with my 'Mater?	Jul. 9	6-8:30 p.m.	\$6
Cool Season Crops for Vegetable Gardens	Aug. 11	9:30 a.m noon	\$6
Cool Season Crops for Vegetable Gardens	Aug. 12	6-8:30 p.m.	\$6
Native Tree Identification	Sep. 1	9:30 a.m noon	\$10
Native Tree Identification	Sep. 3	6-8:30 p.m.	\$10
Fundamentals of Composting	Nov. 5	9:30 a.m noon	\$6

What is soil?

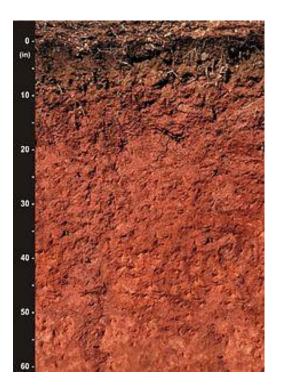
- Weathered rock (mineral)
- Air
- Water
- Organic matter
- Microorganisms

Soil is not dirt!


Soil Composition

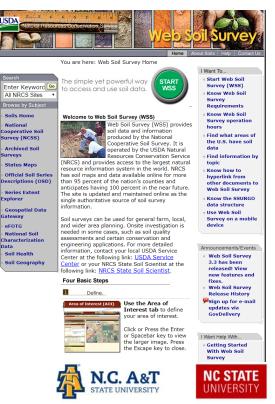
Poorly Drained

Soil Formation



Piedmont Soils

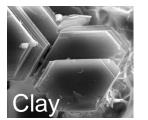
- Ultisols humid, warm environments
- Sandy loam and red clays
- Acidic, pH <u><</u> 5
- Great for forests
- Susceptible to compaction
- Some poorly drained

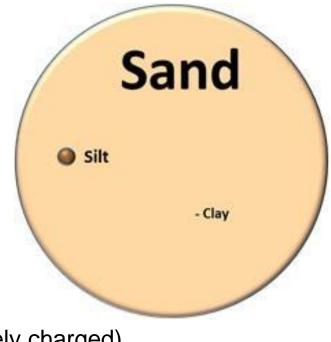

https://chathamncgardening.com/new-to-area/new-to-area-2/

Exploring Soil Types

- USDA NRCS Web Soil Survey
- <u>https://websoilsurvey.sc.egov.usda.gov/</u> <u>App/HomePage.htm</u>

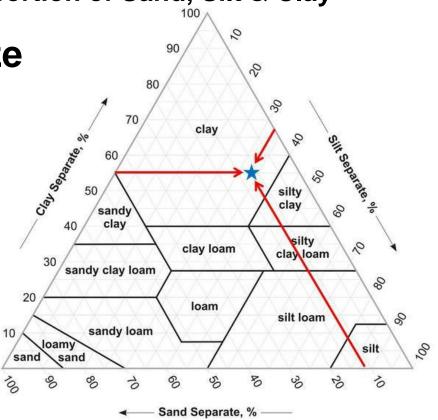
Physical Properties of Soils


Soil Texture The Size and Shape of Soil Particles


- Course texture
- Feel gritty
- Quartz, calcium carbonate

- Medium texture
- Feel like flour, slick
- Quartz, feldspar

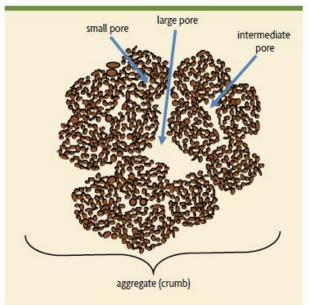
- Fine texture
- Plate like structure
- Negatively charged (nutrients positively charged)
- Aluminum silicate sheets

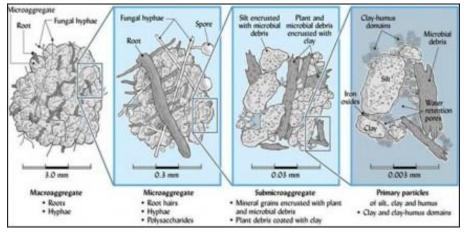

Soil Textural Class Proportion of Sand, Silt & Clay

Proportion effects pore size

- Water retention
- Nutrient retention

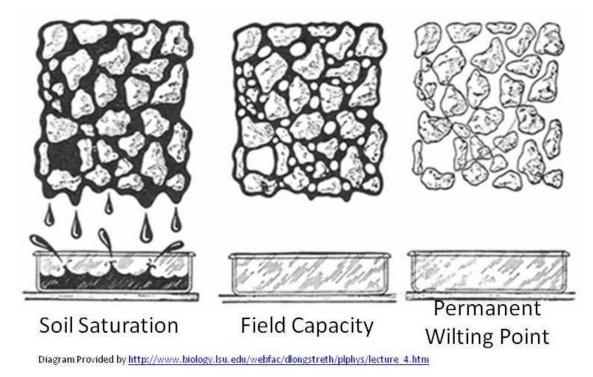
Jar Test https://hgic.clemson.edu/factsheet/soil -texture-analysis-the-jar-test/





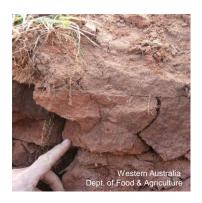
Soil Structure Aggregation of Soil Particles

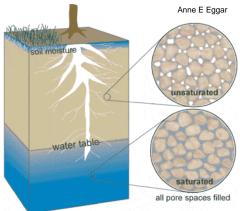
Organic matter binds soil particles together into aggregates & creates pore spaces for water, air, and roots.



Brady and Weil 2010 Elements of the nature and properties of soils

Building Soils for Better Crops USDA SARE

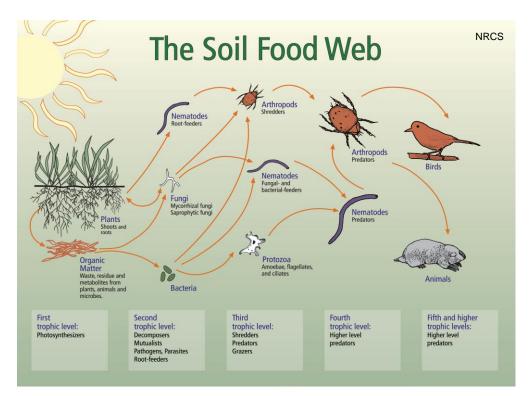

Water Holding Capacity



Soil Depth

Barriers to Root Growth

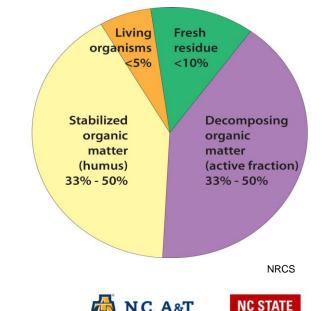
Hardpans


Low pH

Deeper soils provide better root anchorage and hold more water & nutrients

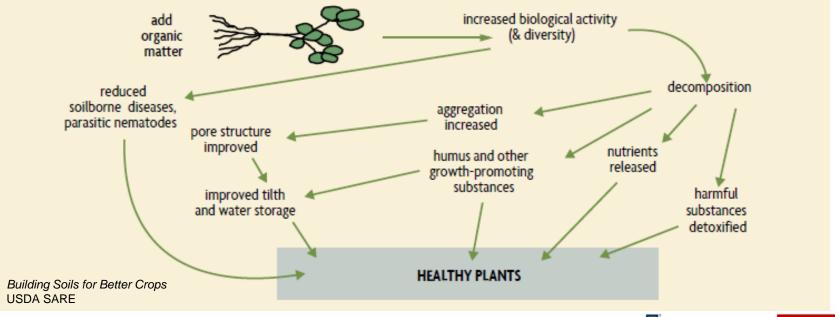
Healthy soils have complex ecosystems

- Produce organic matter & pores
- Improve structure and nutrient cycling



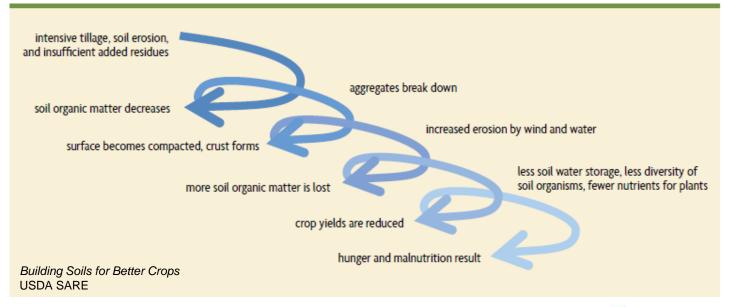
Soil Organic Matter Fraction of soil composed of biological material

Improves Soil structure


- Nutrient cycling & capacity
- Water holding capacity
- Improves sands and clays!

Promotes soil microbes that improve aggregation and nutrient cycling

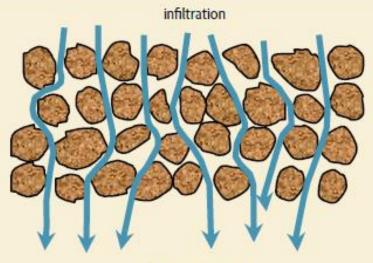
Benefits of Organic Matter

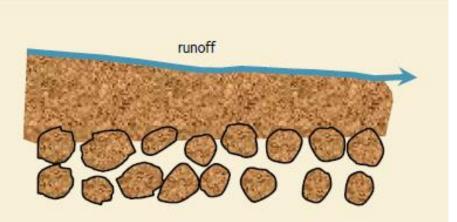


NC STATE

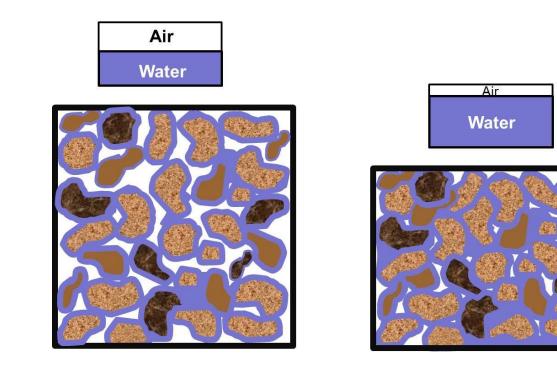
UNIVERSITY

Soil Degradation




Soil Crusts

Building Soils for Better Crops USDA SARE


a) aggregated soil

b) soil seals and crusts after aggregates break down

Soil Compaction

University of Minnesota Extension

Many residential soils are compacted

Adding Organic Matter

- Till in compost when garden is *first created*
 - 25% by volume
 - See Table 1-2 of Extension Gardener Handbook
 - <u>https://content.ces.ncsu.edu/extension-gardener-</u>
 <u>handbook/1-soils-and-plant-nutrients#section_heading_7239</u>
- Apply thin layers (1-3 in.) of organic matter or compost to the soil surface each year

Types of Organic Matter to Add

Clay Soils

- Compost
- Composted leaf mold
- Pine bark (<0.5 in. diameter)

Avoid

 Peat moss, sand, hardwood bark, wood chips, and pine straw for incorporation

Composting Resources

NC State Extension Composting Portal

https://composting.ces.ncsu.edu/

- Home Composting
- Large Scale Composting
- Worm Composting

Composting Chapter from the NC Ext. Gardener Handbook: <u>https://content.ces.ncsu.edu/extension-gardener-handbook/2-composting</u>

Fundamentals of Composting Workshop in Pittsboro Nov. 5

Rhonda Sherman Dept. of Hort. Sci., NCSU Solid Waste Specialist

Bed Preparation and Site Selection

Site Preparation

Remove weeds and grass

- Smother
- Sod cutter
- Herbicides

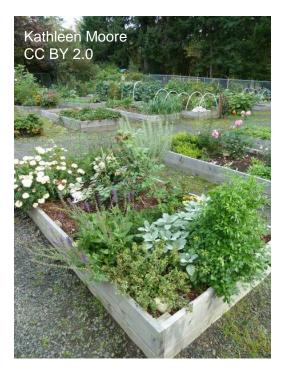
Uncontained Raised Beds

- Superior drainage
- Warm-up faster in spring
- Easy access
- No compaction in root zone

NC COOPERATIVE

Uncontained Raised Beds

- Use soil from paths and incorporate organic matter to build mounds
- 4-8" high, 45° slopes
- 3-4' wide
- 1.5-3' between beds
- Flat top
- Mulch between beds



NC COOPERATIVE

Contained Raised Beds

- At least 8" deep
 - Till or loosen soil underneath before filling
- 4' wide or less
- Length depends on material available space
- Fill with **mix** of soil and compost (25-50%)
 - Pinebark fines, purchased topsoil mixes, etc.
 - In Chatham Co., Brooks Contractor BR-4
 50:50 mix available at many garden centers

Contained Raised Beds

Treated or Untreated Wood

Wood-Plastic Composites

Contained Raised Beds

Concrete Blocks

Corrugated Metal

Corrugated Sheet Metal

Concrete Blocks Easy to build

Why garden in containers?

Grow Food in Small Spaces

Flexibility & Accessibility

Avoid Soil Problems

Other Considerations

• More frequent watering

More frequent fertilization

• Don't use native soil

Choosing Containers

Containers can be made of many different materials

Containers must be able to:1) Hold soil media2) Drain water

Add drainage holes if needed

Porous

- Clay
- Terracotta
- Unglazed ceramic

Container Materials

Semi-porous

- Wood
- Pressed fiber

Non-porous

- Plastic
- Metal
- Fiberglass
- Glazed ceramic

Container Size

- Need space for roots
- Shallow rooted veg. crops: Min. 4-8 in. depth
- Root or fruit crops: Min. 10-12 in. depth
- Larger = better moisture retention
- Penn State Extension Study
 - 14"- 20" diameter

Vegetable	Minimum Size Container	Spacing	Minimum Container Depth
Beans	2 gallon	2–3 inches	8–10 inches
Beets	2 quart	2-3 inches	8 inches
Bok choy	1 gallon	6 inches	20 inches
Carrots	2 quart	2-3 inches	10 inches
Collards	3 gallon	12 inches	12 inches
Cucumbers	1 gallon	1 plant per container or 12-16 inches	8 inches
Eggplant	5 gallon	1 plant per container	12-16 inches
Green garlic	2 quart	4 inches	4-6 inches
Kale	3 gallon	6 inches	8 inches
Lettuce	2 quart	4–5 inches	6-8 inches
Mustard greens	3 gallon	6 inches	4-6 inches
Peas	2 gallon	2-3 inches	12 inches
Peppers	2 gallon	1 plant per container or 14-18 inches	12-16 inches
Potatoes	30 gallon	5–6 inches	
Radishes	2 quart	2-3 inches	4-6 inches
Scallions	2 quart	2-3 inches	6 inches
Spinach	1 gallon	2-3 inches	4-6 inches
Squash	2 gallon	1 plant per container	12-24 inches
Swiss chard	2 quart	4–5 inches	8 inches
Tomatoes	5 gallon	1 plant per container	12-24 inches

Table 18.1 *NC Extension Gardener Handbook* <u>https://content.ces.ncsu.edu/extension-gardener-handbook</u>

Adding Gravel to the Bottom of Pots?

- Does not improve drainage
- Creates a perched water table
- Fill entire container with uniform media

The wettest soil is at the bottom.

Gravel moves the wettest soil up in the pot, closer to the roots, which can lead to rot.

NC COOPERATIVE

Growing Media

Peat Moss

Vermiculite

Perlite

Simple Seed Starting Mix (Rutgers University)				
Shredded sphagnum peat moss	10 gallons			
No. 2, 3, or 4 domestic or African vermiculite ^b (horticultural grade, dust screened)	10 gallons			
Pulverized Limestone Dolomitic Lime for mixes with domestic vermiculite or Calcitic Lime for mixes with African vermiculite	1 1/4 cups or 3/4 cups			
Superphosphate (20% P) or Triple superphosphate (46%)	1/2 cup or 1/4 cup			
Fertilizer (5-10-10) 10 gallons	1 cup			

Commercial Container Media

- Many variants available
- Combination of peat moss, perlite, vermiculite
- Easy to find and purchase
- Look for 'Mix' or 'Media
- Avoid "topsoil" or "garden soil" etc. for containers
- May contain fertilizers not enough!

Want more information on container gardening?

go.ncsu.edu/chathamfallveggies

Light Requirements

Oregon State **Oregon State** Hours of Direct Sun per Day **Fruit Crops** 8-10 Purdue Leaf and 6-8+ **Root Crops CIT**

All vegetables need at least 6-8 hours of direct sunlight per day

NC COOPERATIVE

Other Site Considerations

Accessibility

- Foot Traffic
- Tools
- Water Sources

Drainage

• Avoid low areas where water pools after rain

Near Water Source

- Vegetables need consistent water supply
- 1" water per week, May-Sept.
- Water soil, not the plant
 - Soaker hose
 - Drip lines

Resources

NC State Extension Homegrown

https://homegrown.extension.ncsu.edu

- In the Garden Videos
- In the Kitchen Videos
- On the Farm Videos

In The Garden

From growing your own produce to compositing your kitchen scraps, we'll take you through the finer points of putting your green thumb to good use. And whether you've got a whole backyard ready to be planted or a couple houseplants on your windowsill, we're here to help. Go ahead, get your hands dirty.

Recent Stories

Inside Scoop. How Ice Cream is Made 🕈

Rainbow Pita Pockets 🔶

Healthy Toss Up Snack for Kids 🕈

Oct 11, 21

Questions from this class?

Need help interpreting soil report?

Matt Jones matt_jones@ncsu.edu 919-542-8243

Other gardening questions?

Master Gardener | Chatham County

Plant Clinic: MW 1:00-4:00, F 9:00-12:00 **chathamemgv@gmail.com** 919-545-2715 (Except during COVID-19)

Please Complete the Evaluation!

https://go.ncsu.edu/veggie-evaluation1

