

Plant Nutrients and Fertilizers

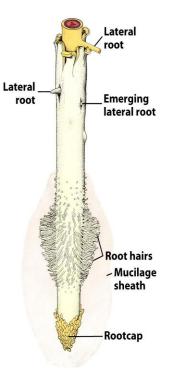
Soil & Nutrient Management in Vegetable Gardens Module II

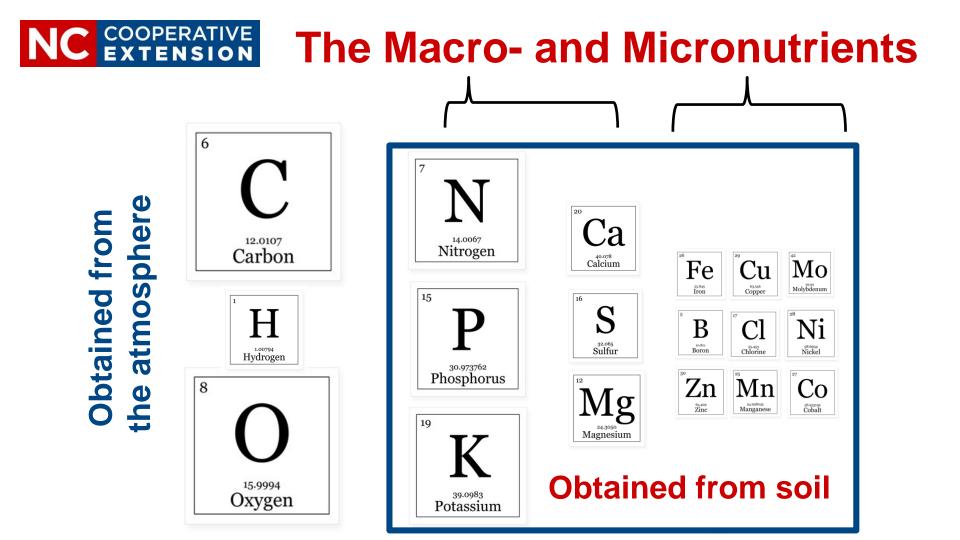
Matt Jones

Horticulture Extension Agent NC Cooperative Extension - Chatham County Center

Plant Nutrients

• What is "plant food" ?


- Nutrients are chemicals necessary for an organism's biochemistry
- Nutrients help a plant *make* food


NC EXTENSION How do Plants Absorb Nutrients?

- Roots absorb water and nutrients dissolved in water
- Cannot absorb solid pellets!
- What happens when the soil is dry?
- Roots must be healthy to absorb nutrients

Nutrient Deficiencies

Univ. of Arizona

Some nutrient deficiencies (and toxicities) are symptomatic in leaves

Symptoms

- Chlorosis or necrosis
- Entire leaf, margin, or interveinal
- Older vs. younger leaves

Requires tissue analysis for confirmation

- NCDA (\$3)
- <u>http://www.ncagr.gov/agronomi/uyrplant.htm</u>

Marginal Chlorosis

Interveinal Chlorosis

Immobile nutrient Deficiency on younger leaves

Mobile nutrient Deficiency on older leaves

NC EXTENSION Macronutrient Deficiency Symptoms

Readily leaches from soil if not used by plants

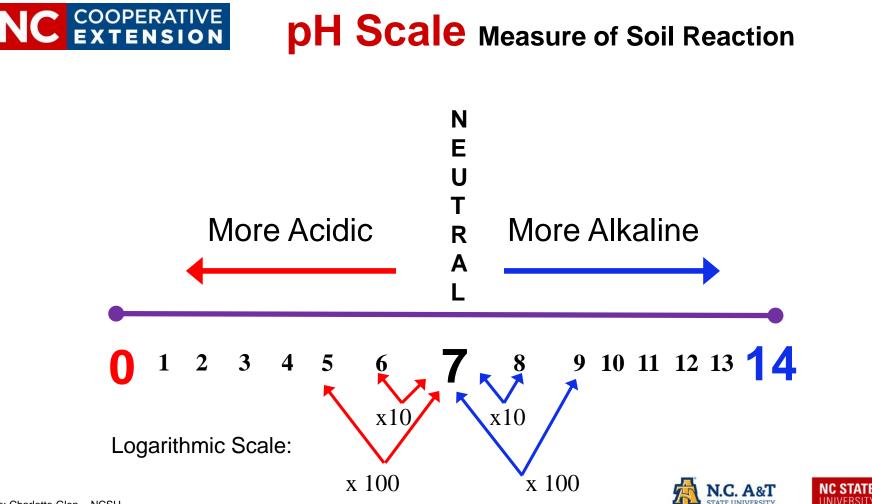
Readily leaches

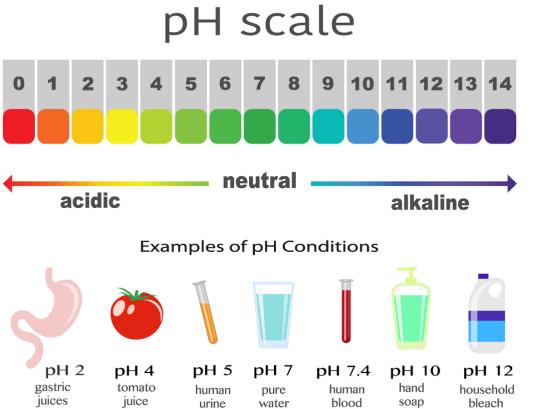
Rare (ag/urban) Too much, excess runs-off

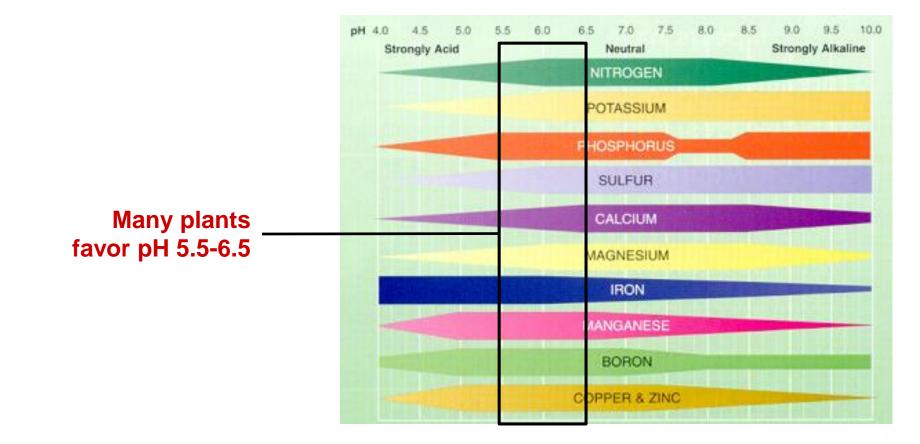
Rarely a *soil* deficiency

Adsorbed by clay soils Can leach in organic soils

Micronutrient Deficiency Symptoms







NC EXTENSION How pH Affects Nutrient Availability

How do you determine the nutrient and pH status of your soil?

How to determine nutrient & pH status?

Soil Testing from the NCDA!

- Only reliable method to asses soil nutrient content and pH
- Boxes & forms available from NC Cooperative Extension •
- effectively suspended during co Analysis is *free* for NC residents (Apr.-Nov.) ٠
 - \$4/sample: Dec-Mar •

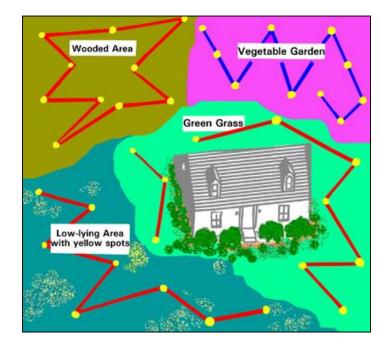
Master Gardener | Chatham Countv

Chatham MGVs deliver soil samples monthly during the free period!

How to Sample Soil

- Use clean equipment
- Shovel or soil probe
- Plastic bucket for mixing subsamples

How to Sample Soil


Sample different areas separately

- Plants/Crops
- Topography
- Soil texture
- Plant health

Avoid areas that will skew results

- Compost piles
- Burn piles
- Animal 'minefields'

Take 10 subsamples per area

2

How to Sample Soil

Remove thatch, mulch, and debris

Dig Hole

- Veg/Flower Gardens: 6-8 in.
- Trees/Shrubs: 6 in.
- Lawns: 2-4 in.

How to Sample

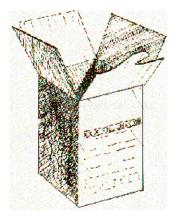
Take a slice on the side

With your shovel or trowel remove a 1 inch thick slice from the smooth side of the open hole.

Virginia Tech

Mix subsamples in a bucket

Remove any rocks, twigs, other debris



How to Sample Soil

5

Fill box with portion of composite sample

- Fill box to fill line
- Do not submit wet samples
- Do not tape box shut
- Do not store boxes in plastic bags

		LINE APPLIED WITHIN		You must specify a erop COOE to reserve a recommendation (see reverse side of form)				
(Leave biank) IDENTIFICATION		PAST 12 MONTHS Tomolitere Month Year		PIRST CROP	0008	SECOND CROP	0008	
1								
2								

Complete form & submit sample

- Name and contact information
- Sample ID and Crop Code
- Deliver to NCCE Chatham

Where to Find Sample Results

http://www.ncagr.gov/agronomi/pals/

We will help interpret the soil test report!

Lab	ProcessTime		
Soil	1 to 2 Weeks		
Nematode	4-5 weeks		
Nematode(Problem)	3 to 5 days		
Plant	2 days		
Waste	7 to 10 days		
Media	3 to 4 days		
Solution	3 to 4 days		

Once deficiencies are known, how do you make corrections?

Fertilizers vs. Amendments

Fertilizers

Compounds containing nutrients added to the soil to improve plant health

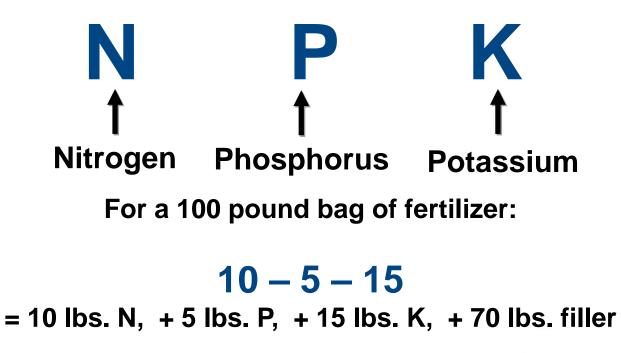
Fertilizers vary by:

- Source
- Release time
- Application method

Amendments

Compounds that improve soil structure or physical condition

Natural fertilizers such as manure can be both a fertilizer and an amendment



Nutrient Analysis Interpreting Fertilizers

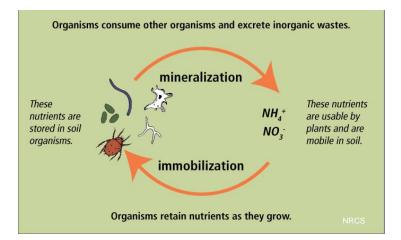
Number on the bag represent % of:

<u>Analysis</u>	Ratio
10 - 10 - 10	1:1:1
5 - 10 - 5	1:2:1

Fertilizers with the same ratio are substitutable, but must change application rate.

For example:

- 5 lbs. of 10-20-10 is equal to 10 lbs. of 5-10-5
- 10 lbs. of 5-10-10 is equal to 5 lbs. of 10-20-20


Natural Fertilizers Types of Fertilizers

Derived from natural sources

- Composts and manures
- Mined minerals
- Animal byproducts

Nutrient content

- Required on label if sold as fertilizer
- Depend on soil microbial activity for mineralization

NC COOPERATIVE

Common Natural Fertilizers

Dried Blood Meal ~10-0-0

- Rapid release rate
- Excellent for side-dressing

Feather Meal 11-0-0

Slow release rate

Fish Emulsion 10-6-2

Trace micronutrients

Poultry Manure 4-4-2

- MUST BE COMPOSTED
- Rapid release rate

Bone Meal 3-15-0

Medium release rate

Wood Ash 0-2-6, 25% Ca

• Raises pH (50% lime equivalent)

Table 17-2. Organic fertilizersabc.

Items below are generally acceptable under the NOP for commercial organic farmers, unless otherwise noted

Primary Benefit	Average Analysis	Notes
Organic matter	5-1-2	Contains triacontanol, a natural fatty acid growth stimulant, and trace minerals.
Organic matter	N/A	Includes photosynthetic organisms of the Kingdom Protista typically found in aquatic or shoreline environments. Algae do not have true roots, stems, or leaves. Organic Materials Review Institute (OMRI) approved.
Chelating agent	N/A	A chelating agent improves plant uptake of a nutrient. Also used as a plant growth regulator.
Liming effect, source of calcium, micronutrients	25% calcium carbonate; 9% potash	Ash from plant or animal sources only. Ashes from burning minerals, manure, or other substances are prohibited.
Micronutrients	N/A	Improves cation exchange capacity.
Nitrogen	10-0-0	Dried blood collected from slaughtered animals. One of the highest non- synthetic forms of nitrogen. Over-application can burn plants with too much ammonia.
Phosphate	3–15–0; 20% total phosphate; 24% calcium	Ground animal bones that have been steamed under pressure, heated, or rendered sterile. Bone meal phosphorus is only plant-available in soils lower than pH 7. Widely available at feed stores.
Trace minerals	10% boron	Also known as sodium tetraborate.
Calcium	65–80% calcium carbonate	Mined calcium carbonate.
Nitrogen	2-0.3-0.2	Acid-forming soil amendment. Needs limestone supplement.
Phosphate	0-2-2	
Organic matter	Varies with components added	The product of a managed process through which microorganisms break down plant and animal materials into plant-available soil nutrients. Composted materials produced in vessels or static aerated piles must be maintained at a temperature between 131° F to 170° F for 3 days. Windrow systems must maintain at the above temperature for 15 days and turned at least 5 times.
	Organic matter Organic matter Chelating agent Liming effect, source of calcium, micronutrients Micronutrients Nitrogen Trace minerais Calcium Nitrogen Nitrogen Phosphate Phosphate	Organic matter 5-1-2 Organic matter N/A Chelating agent N/A Liming effect, source of calcium, micronutrients 25% calcium carbonate, 9% potash Micronutrients N/A Nitrogen 10-0-0 Phosphate 3-15-0; 20% total phosphate; 24% calcium Trace minerals 10% boron Calcium 65-60% calcium carbonate Nitrogen 2-0.3-0.2 Phosphate 0-2-2 Organic matter Varies with components

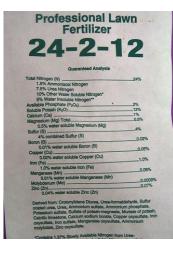
See: <u>Table 17-2</u> of the <u>Organic Gardening chapter</u> of the <u>NC</u> <u>Extension Gardener Handbook</u>

Organic & Natural Fertilizers for the Home Ground & Garden (Univ. of New Hampshire Extension)

Synthetic Fertilizers Types of Fertilizers

Derived from industrial sources

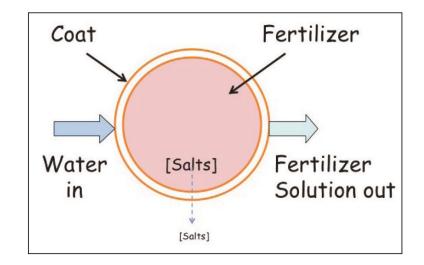
- Less expensive
- High energy input


Nutrient content

- Precisely known, measured and labeled
- Many formulations

Purified, mixed and blended

- Skips the microbial mineralization process
- Can be absorbed by plants immediately unless in slow release coating
- Quick release more prone to over-application and run-off

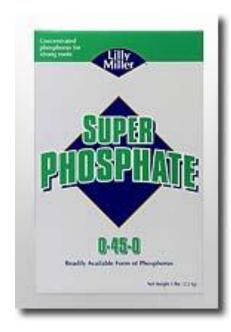


Slow & Controlled Release Fertilizers

- Released into soil over a longer period of time
- Used more efficiently by plants
- Natural fertilizer release rate depends on microbial activity
- More expensive

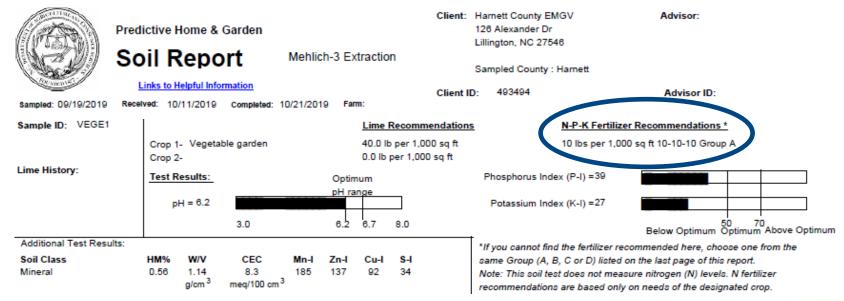
Quick Release Fertilizers

- Available for immediate root uptake
 - Granulated
 - Liquid
- More like to leach from soil
 - Waste
 - Pollution
- More likely over apply and cause 'burning'
- Less expensive



Common Synthetic Fertilizers

- Ammonium Sulfate 21-0-0
- Ammonium Nitrate 33-0-0
- Epsom Salts (Magnesium Sulfate)
- Muriate of Potash 0-0-60
- Nitrate of Soda 16-0-0
- Triple Superphosphate 0-46-0, Superphosphate 0-20-0
- Urea 45-0-0



How Much Fertilizer to Apply?

Follow test report recommendations!

NC COOPERATIVE EXTENSION

Applying Fertilizer

Fertilize based on soil test recommendations Incorporate in top few inches before planting

- Row gardens: 2/3 broadcast, remainder banded
- Raised beds: broadcast, scratch or rake in
- Make sure fertilizer is watered-in before planting

Banding Fertilizer

Side Dressing

Cabbage, peppers, potatoes, squash

Apply 1 Tbsp. high N fertilizer per plant halfway through growing season (NCSU) **OR** 0.5-1 lb. N/1000 ft² one month after emergence or transplanting (NCDA)

Okra

0.5-1 lb. N/1000 ft² when 2 ft. high (NCDA)

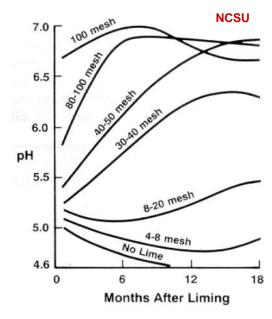
Tomatoes

0.5-1 lb. N/1000 ft² 4 & 8 weeks after first bloom (NCDA)

Potatoes, Sweet Corn

1.5 -2 lb. N/1000 ft² one month after emergence or transplanting (NCDA)

Adding Lime to Raise Soil pH


Only add lime based on soil test results! Lime Materials

- Calcitic lime (CaCO₃, Ca(OH)₂, CaO)
- Dolomitic Lime (MgCO₃)

Finer grains, faster reaction

- Most agricultural lime is 8-20 mesh
- 4-6 months to react & raise pH

Soil Acidity & Liming: Basic Information for Farmers and Gardeners https://content.ces.ncsu.edu/soil-acidity-and-liming-basic-information-for-farmers-and-gardeners

Adding Sulfur to Lower Soil pH

For acid loving plants

- Rhododendron spp., blueberries

Elemental Sulfur

- Biological reaction (slow)
- Potent

Aluminum Sulfate

- Chemical reaction (fast)
- Less potent

Acidifying Fertilizers

- Ammonium sulfate, $(NH_4)^2 SO_4 (21-0-0)$
- Sulfur-Coated Urea

HOME & GARDEN INFORMATION CENTER

Changing the pH of Your Soil

The soil pH value is a measure of soil acidity or alkalinity. Soil pH directly affects nutrient availability. The pH scale ranges from 0 to 14, with 7 as neutral. Numbers less than 7 indicate acidity while numbers greater than 7 indicate akklinity.

The pH value of soil is one of a number of environmental conditions that affects the quality of plant growth. The soil pH value directly affects mutient availability. Plants threa best in different soil pH ranges. Ataleas., theododendrons, blueberties and condiris thrive best in acid uois (pH 5 0 to 5.5). Vegetables, grasses and most ornamentals do best in sightly acids coils (pH 5 3 to 6.5). Soil pH values above or below these ranges may result in less vigorous growth and nutrient deficiencies.

Numers for hashing plane growth are divided into three categories: primary, secondary and micronuments. Ninogen (N), phosphorus (P) and potosium (G) are primary numers which are been plane minets. Calcium (C), angenesium (Mg) and suffur (S) are secondary numers which are required by the plant in itsery cumtrise to tare to less essential for good plane growth than the primary numers. Junc (Ca) and mangensee (MG) are micronuments, which are required by the plant in very small mounts. Most secondary and micronumitent deficiencies are easily corrected by keeping the plane of the plane of the plane of the plane micronumers. The secondary and micronumers and the continue UV value.

The major impact that extremes in pH have on plant growth is related to the availability of plant mutients or the soil concentration of plant-toxic minerals. In highly acid soils, aluminum and magnanesc can become more available and more toxic to the plant. Also at low pH values, calcium, phosphorus and magnesium are less available to the plant. At pH values of 6.5 and above, phosphorus and most of the micronutrients become less available.

Factors Affecting Soil pH

The pH value of a soil is influenced by the kinds of parent materials from which the soil was formed. Soils developed from basic rocks generally have higher pH values than those formed from acid rocks.

Rainful also affects soil pH. Water passing through the soil leaches basic numents such as calcium and magnesium from the soil. They are replaced by acidic elements such as ahuminum and iron. For this reason, soils formed under high rainfall conditions are more acidic than those formed under and (dry) conditions.

Application of fertilizers containing ammonium or urea speeds up the rate at which acidity develops. The decomposition of organic matter also adds to soil acidity.

Increasing the Soil pH

To make soils less actific, the common practice is to apply a material data contains some form of time. Grown A spricultural innectone is most frequently used. The finer the linnectone particles, the more rapidly it becomes effective. Different soils will require a different annount of lime to adjust the soil pH value. The texture of the soil, organic matter consider in adjusting the pH value. For example, soils low in clay require less lime than soils high in clay to make the same bH chance.

Selecting a Liming Material: Homeowners can choose from four types of ground limestone products: pulverized, granular, pelletized and hydrated. Pulverized lime is finely ground. Granular and pelletized lime are less likely to clog when

https://hgic.clemson.edu/factsheet/ changing-the-ph-of-your-soil/

Adding Sulfur to Reduce pH

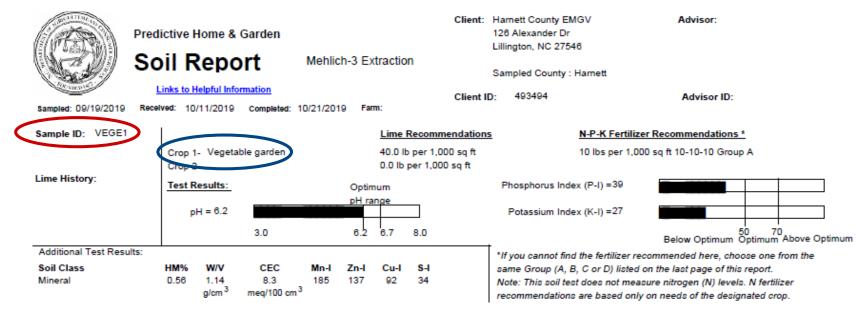
Pounds of Sulfur per10 square feet to Lower the Soil pH to the Recommended Level

Present pH			Desired pH		
	6.5	6.0	5.5	5.0	4.5
8.0	0.3	0.4	0.5	0.6	0.7
7.5	0.2	0.3	0.4	0.5	0.6
7.0	0.1	0.2	0.3	0.4	0.5
6.5		0.1	0.2	0.3	0.4
6.0			0.1	0.2	0.3

Elemental Sulfur

Pounds of Aluminum Sulfate per 10 square feet to Lower the pH to the Recommended Level

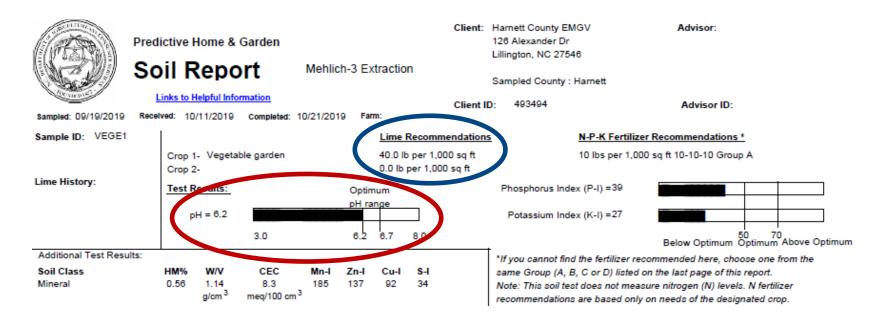
Present pH	Desired pH					
	6.5	6.0	5.5	5.0	4.5	
8.0	1.8	2.4	3.3	4.2	4.8	
7.5	1.2	2.1	2.7	3.6	4.2	
7.0	0.6	1.2	2.1	3.0	3.6	
6.5		0.6	1.5	2.4	2.7	
6.0			0.6	1.5	2.1	


Aluminum Sulfate

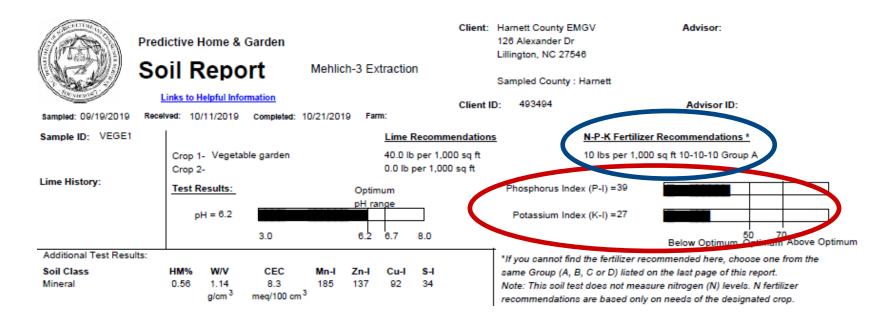
https://hgic.clemson.edu/factsheet/changing-the-ph-of-your-soil/

Interpreting the Soil Test Report

Sample ID – What you named your sample


Crop 1 – What you plan to grow

NC COOPERATIVE


Lime Recommendation

pH level – gives number and shows where your pH is in comparison to target range Lime recommendation – for dolomitic or agricultural/garden lime, pounds per 1000 ft.²

NC COOPERATIVE

Fertilizer Recommendation

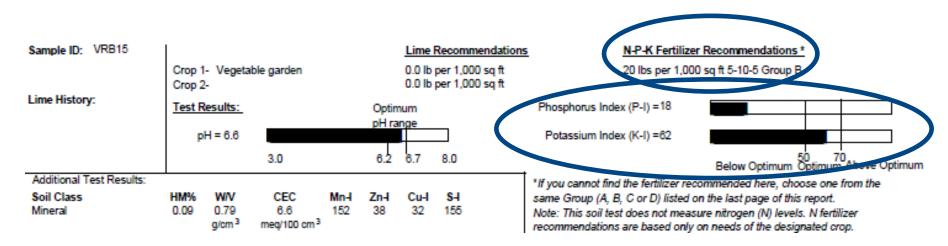
Phosphorous and Potassium Index – between 50 and 70 is ideal, lower than 50 will recommend fertilizer

Fertilizer Recommendation – in pounds per 1000 ft.²


How Much Fertilizer to Apply?

- For fertilizers containing more than one nutrient, nitrogen usually used to calculate application rate
- Most recommendations are for 1 lb. of actual N per 1000 ft.²
- This is the amount of 'actual nitrogen' applied

How many pounds of 10-5-10 fertilizer is needed to get 1 lb. of actual nitrogen per 1000 ft²?


Actual N / Nutrient % = Amount Needed 1 / 10% = 101 / 0.1 = 10

NC EXTENSION Example Fertilizer Calculation

pH = 6.6 No need to apply lime!

NC EXTENSION Example Fertilizer Calculation

P is low K is adequate Recommendation: 20 lbs. 5-10-5 per 1000 ft²

Example Fertilizer Calculation

Recommendation: 20 lbs. 5-10-5 per 1000 ft²

Calculate equivalent for your area 4 ft. x 12 ft. = 48 ft.^2

$$\frac{20 \text{ lbs.}}{1000 \text{ ft}^2} = \frac{x \text{ lbs.}}{48 \text{ ft}^2}$$

x = 0.96 lbs. of 5-10-5 fertilizer for your 48 ft.² bed

How Much Fertilizer to Apply?

Fertilizer Calculators

- Purdue: https://turf.purdue.edu/fertilizer-calculator/
- UGA: <u>http://aesl.ces.uga.edu/soil/fertcalc/</u>
- TAMU: <u>http://soiltesting.tamu.edu/webpages/calculator.html</u>

Need help interpreting soil report?

Matt Jones matt_jones@ncsu.edu 919-542-8243

Questions from this class?

Need help interpreting soil report?

Matt Jones matt_jones@ncsu.edu 919-542-8243

Other gardening questions?

Master Gardener | Chatham County

Plant Clinic: MW 1:00-4:00, F 9:00-12:00 **chathamemgv@gmail.com** 919-545-2715 (Except during COVID-19)

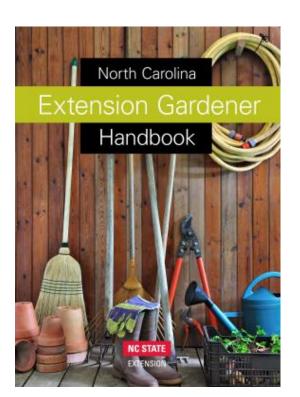
Vegetable Gardening Resources

• For this class: https://go.ncsu.edu/chathamveggies

Gardening Portal: https://gardening.ces.ncsu.edu/

Extension Gardener Portal:
 https://extensiongardener.ces.ncsu.edu/

Subscribe to the Chatham Gardener Newsletter


- Sustainable gardening information
- Monthly articles written by Master GardenerSM Volunteers
- Upcoming classes and events
- To subscribe: <u>http://go.ncsu.edu/subscribecg</u>

Extension Gardener Handbook

- Available online for FREE
 https://content.ces.ncsu.edu/extension-gardener-handbook
- Full-color, hardback copy available from UNC Press (\$60)

Please Complete the Evaluation!

https://go.ncsu.edu/veggie-evaluation1

