Climate change: what's happening & why it matters for NC nature

December 8, 2021

https://ncics.org/programs/nccsr/

BACKYARD NATURALIST PROGRAM

4 excellent references

here

summary

Plan language

Fourth National Climate Assessment

U.S. Global Change Research Program

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II Ecosystems, Ecosystem Services, and Biodiversity

Federal Coordinating Lead Authors Shawn Carter U.S. Geological Survey Jay Peterson National Oceanic and Atmospheric Administration

Chapter Leads Douglas Lipton National Oceanic and Atmospheric Administration

Madeleine A. Rubenstein U.S. Geological Survey

Sarah R. Weiskopf U.S. Geological Survey

> Volume II Impacts, Risks, and Adaptation in the United States

I Baker Perry

Walter A Robineor

Laura E. Stevens

Brooke C. Stewart

Adam J. Terando

Authors

Kenneth F. Kunkel D. Reide Corbett David R. Easterling Kathie D. Dello Andrew Ballinge Jenny Disser Solomon Bililign Gary M. Lackmann Sarah M. Champior Richard A. Luettich Jr.

North Carolina

March 2020

Recommended Citation

nkel, K.E., D.R. Easterling, A. Ballinger, S. Billign, S.M. Cha M. Lackmann, R.A. Luettich, Jr., L.B. Perry, W.A. Robinson, roling Climate Science Report. North Carolina Institute for ett, K.D. Dello, J. Dissen, Stewart, and A.J. Terand Subject to final copyedit and layout

Climate Sc ience Advisory Pane

Kenneth E. Kunkel | David R. Easterling | Ana P. Barros | Solomon Billign | D. Reide Corbett Kathie D. Dello | Gary M. Lackmann | Wenhong Li | Yuh-lang Lin | Richard A. Luettich Jr. Douglas K. Miller | L. Baker Perry | Walter A. Robinson | Adam J. Terande

This evening ...

- Climate change basics
- What's happened/what's expected
- Impacts on nature
- Nature as a (partial) solution
- Wrap up & conversation (Qs anytime in chat)

Basics: Earth energy

• Earth

gets energy from the sun

loses energy as infrared radiation (IR)

• This balance sets global temperature

(as measured by an astronomer on Mars)

Basics: greenhouse effect

Greenhouse gases absorb outgoing IR & emit IR (Kirchoff's law) warming Earth's surface

Basics: the greenhouse effect & Earth's temperature

Without greenhouse Earth is too cold for life

Basics: greenhouse gases

- Water vapor
 - Controlled by weather & climate
- Carbon dioxide

From burning coal, oil, & gas Clearing forests

- Methane
 - Livestock Rice paddies Shale-gas production Landfills
- Nitrous oxide

Denitrification (e.g. of fertilizer)

forcing radiative Anthropogenic

https://www.ipcc.ch/report/ar5/wg1.

Basics: expected warming

CO₂ up nearly 50% since 1800

- burning coal, oil, gas
- clearing forests & prairies

For 2xCO₂

- expect 3 8 °F warming
- Svante Arrhenius (1896)
 At current pace, CO₂ will double its

preindustrial level in ~50 years

"Suki" Manabe 2021 Nobel Prize in Physics

https://www.esrl.noaa.gov/gmd/ccgg/trends/

What's happened: globally

• About 1°C (1.8°F) warming since 1900

https://data.giss.nasa.gov/gistemp/

Climate stripes: 1850 to now

What's happened: NC

 Strong warming since 1960s

 – early 20th Century was warm

What's happened: 2019 warmest year for NC

https://climate.ncsu.edu/climateblog?id=308

What's happened: sea level

Contributors to global sea sea level rise (1993-2018)

https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

∆ local sea level = ∆ global sea level + ∆ ocean circulation + sinking coastal flood = local sea level + tide + storm surge chronic episodic

What's happened: NC sea level

What's happening: saltwater intrusion

- Chronic sea-level rise drives intrusion into aquifers
- Floods bring salt water from drainage channels over the surface
- Salinization threatens natural ecosystems & agriculture

Hyde County field flooded by Florence https://www.wwno.org/post/florences-impact-will-last-yearsfarm-crisis-advocate-says

Alligator River NWR

What's expected: more global warming

- Continued warming is "baked in": 1°F by 2100
- Large range due to unknown future emissions

https://www.ipcc.ch/report/ar5/wg1/

What's expected: NC

Observed and Projected Annual Average Temperature (1970–2100)

What's expected: NC sea level

https://sealevelrise.org/states/north-carolina/

Front St., Beaufort November 2021

Impacts on nature

Digression: what is natural?

- NC never "pristine"
- Indigenous peoples here for ~12,000 years

Burned landscape to improve hunting & facilitate travel

Since 1,500 BP for cultivation (cf. Barden*)

• Implications for wildfire on unmanaged landscapes

With accelerated drying & prolonged drying season

*Barden, Lawrence S., 1997: Historic Prairies in the Piedmont of North and South Carolina, USA. *Natural Areas Journal*, **17**, 149-152

Species viability – 3 R's

Representation

breadth of genetic and environmental diversity within and among populations

Resiliency

ability to withstand stochastic disturbance; increases with population size, growth rate, & connectivity among populations

Redundancy

ability to withstand catastrophic events by spreading risk among multiple populations or across a large area

<u>Smith et al. 2017</u>

Climate change & the 3 R's

Representation

Reduced genetic diversity – subpopulations poorly adapted to new conditions removed

Reduced environmental diversity as some habitats cross thresholds (temperature, etc.) of viability

Resiliency

More frequent & severe extreme events increase strengths of stochastic disturbances

Redundancy

Reduced, if range contracts

Exacerbated by other human influences: habitat destruction, introduction of invasive species, pollution, etc.

PLOS BIOLOGY shifts & Ice PLOS BIOLOGY tions reduce redundancy

Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species Wiens, 2016

Range expansion may be blocked

• "Escalator to extinction"

Development & agriculture can block northward & upward range expansions

Phenology

- Advance of spring
- But "rate of phenological change varies across trophic levels"
- Migratory species at risk if they arrive at the "wrong" time

Extremes (disturbances) increase with climate change

- New temperature extremes
- New hydrologic extremes (wet & dry)
 - These changes arise from fundamental statistics & physics

Dice metaphor

- Think of the weather on a day as a roll of dice
- Dice "weather": the number from a single roll
- Dice "climate": the statistics accumulated over many rolls
 Average roll = 7

Greenhouse dice

(Courtesy Jim Hansen)

- "Greenhouse dice": add a dot to the 6 on one die
- Average climate changes a little (7 to 7.17)
- But ... 13s!

Real-world greenhouse dice

Northern Hemisphere summer temperatures (land stations)

• Once a century (or rarer) summer heat now once a decade

- As Earth heats up, hottest temperatures, heaviest rains, driest droughts worse than we've ever seen
- Happening now

13s

British Columbia mudslides – 11/14/2021

2021 Pacific NW heatwave

Pilot Mtn NC fire – 11/29/2021

Climate variations over Earth history

- Today's ecosystems developed during 10,000 years of stable climate
- Not ready for 13s

Cm D S D C P Tr I

or a section. And the section of the section of the

+14

+12

+10

+8

+6+4 +2

ŏ ŝ

1960-1990 average

υ

Hydrologic extremes

Water saturation vapor pressure rises exponentially with temperature

- nearly 7% for 1 °C warming
 What does this mean?
 - Air "holds" more water vapor at higher temperatures

Heavier rains

 Air "demands" more water at higher temperature Increased potential evapotranspiration <u>Faster, more intense drought</u>

Rudolf Clausius 1822-1888

Benoit Clapeyron 1799-1864

More intense rain - observed

50 US Southeast – change Change (%) (%) in amount of rain in top 0 1% of rain events -50 1900s 20s 40s 60s 80s 00s https://nca2014.globalchange.gov/ Decade

More frequent heavy rain

US Southeast – days with rain above 3"

More rain from hurricanes

• Biggest US storms in *volume* of rain since 1949:

#1: Harvey in 2017#2: Florence in 2018

Ken Kunkel NC State/NCICS

Flooding events threaten aquatic/riparian species

- Scouring; bank failure & erosion
- Periods of high turbidity
- Pollutants flushed into streams & rivers (hog waste)
- Intervening low-flow periods also more intense

"Everyday" cloudbursts are bigger

July 2016 Raleigh rainstorm

- Unexceptional summer storm
- Crabtree Creek rose 14' in minutes
- -12X increase in discharge

≊USGS USGS 02087275 CRABTREE CREEK AT HWY 70 AT RALEIGH, NC 5.0 inches 4.0 total, 3.0 Rain Precipitation, 2.0 1.0 0.0 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 Jul 15 Jul 15 Jul 16 Jul 16 Jul 17 Jul 17 Jul 18 Jul 18 Jul 19 2016 2016 2016 2016 2016 2016 2016 2016 2016 Precipitation Period of approved data

- Developed watershed
- Scouring
 - Damage to greenway Floodplain greenways are not sustainable under climate change

Dry November (la niña)

Warming amplifies drying during droughts

Increases fire danger

Inerable NC ecosystems North Carolina Climate Risk Assessment and Resilience Plan Ju

Figure 5F–5: Most vulnerable ecosystems identified by Ecosystem Risk Assessment Committee.

NCCRARP

Ecosystems essment and Retilience Plan June

High Elevation Rocky Summit natural

Most impacts are from extreme events

e 2020 Most Vulnerable Ecosystem Types	Change in Seasons	Coastal Erosion	Dam Failure	Extreme Heat	Flooding	Inundation due to Sea Level Rise	Landslides	Saltwater Intrusion	Severe Winter	Weather	Storm Surge	Tidal Flooding	water Shortage	due to Drought	Wildfire	Wind
Coastal Plain Floodplains	*		*		t.			*	*		*	*				*
Coastal Plain Large River Communities				*				*			*	*				
Coastal Plain Nonalluvial Mineral Wetlands								*			*	*			*	
Coastal Plain Stream/Swamp Communities			÷	*	*			*			*	*	*			
Estuarine Communities	*	*				*		*			*	*				
Freshwater Tidal Wetlands	*	*				*		*			*	*				
High Elevation Forests and Outcrops	*			*					*				*		*	*
Maritime Grasslands	*	*		*		*		*			*	*	*			
Maritime Upland Forests		*									*	*				*
Maritime Wetland Forests		*				*		*			*	*				*
Mountain Streams	*		*	*	*		*						ŀ		*	
Mountain Bogs and Fens	*			*	*								*			
Piedmont Streams and Small Rivers			*	*	*								*			
Shell Bottom (estuarine)	*					*		*			*	*				
Soft Bottom (estuarine)	*					*		*			*	*				
Submerged Aquatic Vegetation (Seagrass)	*					*		*			*	*				

Nature as a solution

North Carolina Natural & Working Lands Action Plan

NC matters!

- NC annual emissions: 150 Mt CO₂e <u>https://deq.nc.gov/energy-climate/climate-change/greenhouse-gas-</u> <u>inventory</u>
- Global annual emissions: 36.6 Gt CO₂e <u>https://www.globalcarbonproject.org/carbonbudget/19/highlights.htm</u>

NC produces 1 part in 244 of global emissions

• With 1 in 738 of Earth's people

NC greenhouse gas emissions

Land already mitigates 23% of NC emissions

NWL Action Plan

NC: land of (mitigation) opportunity

Figure 2-1: North Carolina Land Cover Types by Area in 2016

Plenty of undeveloped land, mostly private => mitigation must be incentivized <u>NWL</u>

NWL Action Plan

US natural climate solutions

https://advances.sciencemag.org/content/4/11/eaat1869

Growing interest in "blue" carbon

- C captured & stored by coastal ecosystems
- Now included in US greenhouse gas inventories

https://www.nature.com/articles/s41467-019-11693-w

Forest C sequestration: collateral benefits

Protection of extant forests

Possible reforestation

Pocosins

- Peatland pocosins sequester C
- Accreting keeping up with rising sea level
- Threatened by salt-water intrusion

Peat depth (m)

Degraded pocosins can (will) burn

Release copious amounts of stored C

2008 Evans Road fire in Pocosin Lakes NWR

Double edged sword

• Ecosystems with potential to mitigate emissions become sources when mismanaged or abused

https://cleanaircarolina.org/2019/06/our-clear-cut-problem/

Wrapping up

Global warming is ...

- expected from basic physics
- happening as expected

NC nature is vulnerable to climate change

• Mostly from extremes: heat, drought, floods ...

Natural systems must be part of the solution

- NC is rich in such opportunities
- Thriving ecosystems store Carbon & bring collateral benefits, but they can be squandered

Questions/Conversation?

https://indyweek.com/news/wake/neuse-river-waterdog-under-threat-from-development/