

What's the Matter with My 'Mater?

Matt Jones

Horticulture Agent

NC Cooperative Extension - Chatham County Center

What is Cooperative Extension?

World's largest **non-formal education** network

• Established 1914 by the Smith-Lever Act

Practical, non-degree programs

What is Cooperative Extension?

A nationwide network of

- Educators
- Researchers
- Volunteers

Additional Resources

Sustainable Vegetable Gardening Resources

- Many excellent Extension resources
- Slides from previous classes:
- Soils
- Pests & Diseases
- Warm season crops
- Cool season crops

https://go.ncsu.edu/chathamveggies

Additional Resources

NC State Tomato Disease Factsheets and Videos

Inga Meadows

Extension Associate Vegetable and Herbaceous Ornamental Plant Pathology NC State University

https://go.ncsu.edu/tomato-diseases

NC Extension Gardener Handbook

https://go.ncsu.edu/eg-handbook

Free Online!

Hard copy – UNC Press (\$60)

What's the Matter with My 'Mater?

Matt Jones

Horticulture Agent

NC Cooperative Extension - Chatham County Center

Tomatoes Solanum lycopersicum (Solanaceae)

Relatives: Potato, eggplant, pepper, nightshade What you eat: Mature fruit (botanical berries)

NC COOPERATIVE

Planting Tomatoes

Start Seeds Indoors

- 1/4 in. deep
- Seed heating mat 65-85° F
- 5-7 weeks before last frost (Feb-Mar)
- <u>https://go.ncsu.edu/veggieseedresources</u>

Transplants (purchased or grown yourself)

- Mid-April to July, August
- Plant a little deeper than rootball, on side if leggy
- 18-24" apart, 3' between rows

Planting Tomatoes

Cages

- Less pruning (suckering) required
- Allow 6 in. openings for accessibility

Stakes

- Train to 1 or 2 stems, remove suckers
- 6-8' tall, 8-12" deep

Growing Tomatoes

Fertilizer

- Soil Test!
 - If unavailable: 3 lbs. 5-10-10 or 7.5 lbs. 3-4-3 (organic) per 100 ft²
 - pH 6.0-6.5

Side Dressing

0.3 lb. actual N /100 ft 2 4 weeks and 8 weeks after transplant

= 2 lbs. calcium nitrate or 3 lbs. of blood meal per 100 ft^2

Watering

- 1-1.5" per week equivalent
- Moisten to a depth of 6 inches
- Consistent moisture to reduce Blossom End Rot
- Organic or plastic mulches

Side Dressing

Choosing Tomato Cultivars

Growth Habit

- Dwarf (containers*)
- Compact/Determinate
- Indeterminate

Fruit Characteristics

- Color
- Size
- Fresh vs. Paste
- Acidity

Ripening Period

- Indeterminate vs determinate
 - Determinate: early, mid, late

Genetics

- Open Pollinated
- Hybrid

Disease Resistance

* <u>https://chatham.ces.ncsu.edu/fall-vegetable-gardening-in-containers/fall-vegetable-gardening-in-containers-resources/</u>

NC COOPERATIVE

Tomato Disease Resistance

Look for abbreviations

- V Verticilim Wilt
- F Fusarium Wilt
- (RK)N Nematodes
- **EB** Early Bight
- LB Late Blight
- T(MV) Tobacco Mosaic Virus
- S Septoria leaf spot
- **Bacterial wilt** (grafted)
 - Extension Master Gardener Fundraiser next year!

NC COOPERATIVE

Cherry

- 'Sweet 100'
- 'Sweet Million'
- 'Sun Gold'
- 'Juliet'

Main Crop Hybrids

- 'Celebrity'
- 'Better Boy'
- 'Floramerica'

Tomato Cultivars

Early Ripening

- 'Early Girl'
- 'Bush Early Girl'

For Containers

- 'Husky Gold' & 'Husky Pink'
- 'Tiny Tim'

Heirloom

- 'German Johnson'
- 'Cherokee Purple'
- 'Brandywine'
- 'Green Zebra'

Harvesting Tomatoes

Harvest

- 60-85 days after transplant
- Full color but still firm
- Red pigment degrades > 86°F
- Green tomatoes can ripen off vine if blushed

Storage

- On the counter
- Light not a factor
- Respond to ethylene (climacteric fruit)

Types of Diseases

Abiotic Disorder (Disease)

Caused by environmental or cultural conditions

Biotic Disease

- Caused by a pathogenic organism
 - Fungi and water molds (Oomycetes)
 - Bacteria
 - Viruses
 - Nematodes

Abiotic vs. Biotic Diseases

Comparing Symptoms

Abiotic Disorders	Biotic Diseases
Appear suddenly	Appear gradually
Affects many species	Affect one or related species
Don't spread	Spread
Geometric, linear patterns	Random, hotspot patterns
Distinct separation between healthy and non-healthy tissue	Gradual or 'halo' transition between healthy and non-healthy tissue

Lacking clear signs of pathogens, assume an abiotic cause until it can be ruled out.

NC COOPERATIVE EXTENSION

Abiotic Disorders Blossom End Rot

Susceptible Crops

• Tomato, pepper, eggplant, squash, watermelon

Symptoms & Causes

- Fruit tissue collapse
- Localized calcium deficiency in developing fruit
- Inconsistent watering
- Low pH
- Excessive nitrogen fertilizers

Good review article:<u>https://extension.unh.edu/resource/growing-vegetables-managing-blossom-end-rot-fact-sheet-0</u>

NC COOPERATIVE EXTENSION

Abiotic Disorders Blossom End Rot

Management

- Water deeply and consistently
 - Mulches help
- Maintain soil pH 6.3-6.8
 - Soil test
- Avoid high N fertilizers
 - Ammonium nitrate
- Remove affected fruits

Abiotic Disorders Physiological Leaf Roll

Susceptible Crops

Tomato

Symptoms & Causes

- Leaves curl inward
- Excess N, heat stress, pruning, climatic factors
- Cultivar dependent

Management

- Does not cause growth or yield reductions
- Provide consistent moisture, proper fertilization

NC COOPERATIVE EXTENSION

Abiotic Disorders Blossom Drop

Susceptible Crops

• Tomato, pepper, eggplant, beans

Causes

- High Temperatures
 - Day > 85 ° F, Night > 70 ° F
- Humidity <40% or >70%
- Lack of pollinators

Management

- Plant earlier
- Provide partial shade
- Support pollinators

Abiotic Disorders Fruit Cracking

Causes

Heavy rains following dry spells

Management

Consistent soil moisture

Biotic Diseases

- Restricted to certain hosts
- Symptoms appear slowly and get progressively worse
- Transition zone between healthy and unhealthy tissue
- Survive season-to season in plant tissues, the soil, protective bodies
 - Sclerotia
 - Spores

Disease Triangle

All factors must be present for a pathogen to cause disease.

NC COOPERATIVE

Fungi

Types of Pathogens

Much smaller than fungi

Enter wounds & stomata

Bacteria

Infectious DNA/RNA

Spread by vectors

NC COOPERATIVE

Early Blight Disease Management

Cultural Practices

- Remove diseased plants and debris
- Remove weeds
- Rotate out of Solanaceous crops
- Resistant cultivars

Fungicides

- Chlorothalonil
- Copper (Organic)

Homeowner's Guide to Managing Diseases Using Fungicides

https://go.ncsu.edu/homefungicides

Common diseases of herbaceous ornamentals, woody ornamentals, lawns, fruit trees, small fruits, and vegetables are listed in the following tables along with the most effective fungicides, bactericides, and alternative products available to homeowners for their management. These lists are not exhaustive, and the inclusion of specific products in this publication does not imply endorsement by North Carolina State University or discrimination against similar products or services not mentioned.

Early Blight Disease Management

Tolerant or Resistant Cultivars

- 'Big Beef Hybrid'
- 'Bush Celebrity Hybrid
- Cabernet F1'
- 'Celebrity Hybrid'
- 'Iron Lady'
- 'Jasper'
- 'Juliet F1'

- 'Matt's Wild Cherry'
- 'Mountain Fresh F1'
- 'Mountain Magic'
- 'Old Brooks'
- 'Plum Dandy Hybrid'
- 'Plum Regal Hybrid'
- 'Rutgers'
- 'Tommy Toe'

Late Blight Phytophthora infestans

Late Blight Phytophthora infestans

Late Blight Phytophthora infestans

Late Blight Disease Management

Cultural Practices

- Plant early
- Remove infected plants
- Avoid watering leaves
- Improve drainage

Fungicides

- Chlorothalonil
- Copper (Organic)

Late Blight Disease Management

Tolerant or Resistant Cultivars

- 'Defiant PHR'
- 'Legend'
- 'Lizzano'
- 'Matt's Wild Cherry'
- 'Mountain Gem'
- 'Mountain Honey'

- 'Jasper Hybrid'
- 'Mountain Merit'
- 'Plum Regal Hybrid'
- 'Red Grape'
- 'Red Pearl'
- 'Toronjina'

NC COOPERATIVE Septoria Leaf Spot Septoria lycopersici

NC COOPERATIVE Septoria Leaf Spot Septoria lycopersici

NC COOPERATIVE Septoria Leaf Spot Septoria lycopersici

Septoria Leaf Spot Disease Management

Cultural Practices

- Remove weeds
- Remove infected plants
- Avoid watering leaves

Fungicides

- Mancozeb
- Chlorothalonil
- Copper (Organic)

No resistant cultivars

NC COOPERATIVE EXTENSION FUSARIUM Wilt *Fusarium* oxysporum f. sp. lycopersici

NC COOPERATIVE EXTENSION FUSARIUM Wilt *Fusarium* oxysporum f. sp. lycopersici

NC COOPERATIVE EXTENSION FUSARIUM Wilt Fusarium oxysporum f. sp. lycopersici

NC COOPERATIVE EXTENSION Fusarium Wilt Fusarium oxysporum f. sp. lycopersici

Disease Management

- Soilborne
- Fatal
- No fungicide treatments
- Rotate out of Solanaceae
- Grow in containers
- Use resistant cultivars

Look for cultivars with 'F', 'FF', 'FFF' or $F_1 F_2 F_3$, etc.

NC EXTENSION Botrytis Gray Mold Botrytis cinera

Botrytis Gray Mold Botrytis cinera

NC COOPERATIVE

Botrytis Gray Mold Botrytis cinera

Shawn Butler NC State University **Plant Disease and Insect Clinic**

Botrytis Gray Mold Disease Management

Cultural Practices

- Remove infected plants and debris
- Avoid watering leaves
- Temps above 70° F discourage disease

Fungicides

Chlorothalonil

Southern Blight Athelia rolfsii

Southern Blight Athelia rolfsii

Southern Blight Athelia rolfsii

Southern Blight Disease Management

Cultural Practices

- Remove infected plants and debris
- Rotate with a grain crop or grass cover crop for at least two years
- Soil solarization
- Fungicides only available to farmers

Soil solarization is a pasticida-rise method for controlling many of the commo soil-borne plant pathogens, weeds, nematoles and insects. It has been used for many years in many parts of the world whore summer temperatures are quite warm and solar radiation is shundart, it involves covering study to the solar solar solar solar solar solar solar study to plant through to had the soil, then cubesquently trap the hast. During this period, soil temperatures are frequently raised to 120-125. Finite environmental by friendly procedure may be an effective method for managing soil pests in home gardens or small field plantings.

STEPS FOR SUCCESSFUL SOIL SOLARIZATION IN TENNESSEE

 Plan to solarize when solar radiation is optimal, from June through August.

Avoid areas with shadows or north-facing slopes. Best results will be obtained in open, unshaded gardens.

3. Loosen the soil by rototilling to a depth of 6 inches to improve heat ponetration. It is helpful to first cleare the area of plant debris (weeds, crops, mulch, etc.), as it may interfere with heat conduction. Remove any sticks, sharp stones or other objects that could puncture the plastic.

If the soil is dry, moisten it. Water helps conduct heat, but avoid excessive soil wetting as it can be detrimental.

 Cover the soil with a clear, 2- to 4-mil plastic sheet or strip. The plastic sheet must be clear. Other types of plastic reduce the amount of sunlight transmission.

Stretch the plastic tight and bury the edges with soil. It is important that the edges are well-sealed to prevent loss of heat and loosening of the plastic by the wind. Covering the edges with soil in a trench, about 6 inches deep, helps to hold the plastic in place and minimizes spread of the soil across the plastic.

7. To achieve the highest solarization temperatures, cover the first sheat with another sheet of clear plastic (Figure 1). (The first sheet may be block if the top sheet is clear.) The top sheet provides an insulating layer of warm air, maintaining higher soil temperatures during the night. If you use two layers, create an air gap between the layers of sheeting with strips of foam insulation, small blocks of wood, old garden hose, the, every 2 feet. Avoid materials with sharp edges. The edges of both sheets should be buried.

Figure 1. Installing two layers of plastic sheets with foam insulation strips.

Bacteria Basic Biology

- Unicellular, divide rapidly by fission
- Heterotrophic and Autotrophic
- Ubiquitous in the environment
 - On plants
 - In the soil
- Spread by animals, splashing water
- Enter plants by wounds or stomata

Southern Bacterial Wilt

Ralstonia solanacearum

Southern Bacterial Wilt

Ralstonia solanacearum

Southern Bacterial Wilt Disease Management

Cultural Practices

- Remove infected plants
- Rotate crops
- Resistant rootstocks

Resistant Rootstocks

- RST-05-113-TE
- RST-04-105-T
- Bowman
- Shin Cheong Gang
- Armada

No effective chemical treatments

GRAFTED GROWERS

Master Gardener | Chatham County

Grafted Heirloom Tomato Sale Spring 2024

- MGVs grow heirloom tomatoes grafted by Grafted Growers to bacterial wilt resistant rootstocks.
- Notified of next sale via Chatham Gardener Newsletter

Pith Necrosis

Pseudomonas corrugata

Pith Necrosis

Pseudomonas corrugata

Pith Necrosis

Pseudomonas corrugata

Pith Necrosis Disease Management

Cultural Practices

- Remove infected plants
- Avoid over fertilization
- Avoid wounds
- Clean tools

No bactericides

No resistant cultivars

Xanthomonas spp.

Ama NC

Xanthomonas spp.

Xanthomonas spp.

Ooze Test Check for bacteria streaming

Xanthomonas spp.

Xanthomonas spp.

Bacterial Spot Disease Management

Cultural Practices

- Use clean seed stock and transplants
- Minimize wetting and handling of plants
- Remove infested plants
- Rotate out of Solanaceous crops

Bactericides

- Copper fungicides
- Serenade® (*Bacillus subtilis*)

Viruses Basic Biology

- DNA or RNA in a protein capsule
- Use other cells to reproduce
- Transmitted by vectors
 - Insects, mites, nematodes, fungi, propagation, infected sap & seeds
- Cannot be treated
- Usually not fatal, but cause distorted growth

NC COOPERATIVE

Tomato Spotted Wilt Virus

Frank Louws NCSU

Tobacco thrips

UGA

Tomato Spotted Wilt Virus

Tomato Yellow Leaf Curl

Viral Infections Disease Management

Cultural Practices

- Remove infected plants
- Remove weeds
- Control vectors if possible

Look for resistant cultivars

NC COOPERATIVE

Insect Anatomy

NC COOPERATIVE Insect Mouth Parts and Feeding Methods

Siphoning/Chewing-Lapping Mouthparts

Sponging Mouthparts

How Insects Damage Plants

Chewing Mouthparts

Leaf, Fruit, Root Feeders

Signs & Symptoms

- Chew marks and holes
- Frass
- Webbing

Examples

- Butterflies & Moths (Larvae)
- Beetles (Adults and Larvae)
- Grasshoppers (Adults and nymphs
- Sawflies (Larvae)
- Slugs and Snails

NC COOPERATIVE

Piercing-Sucking Mouthpart Damage

Signs & Symptoms

- Discoloration
- Stippling
- Growth distortions
- Honeydew & Sooty Mold

Examples

- True bugs
- Aphids
- Whiteflies
- Leafhoppers

NC COOPERATIVE

Aphids Hemiptera

Rapid Proliferation

Predator & parasitoid natural enemies

Piercing-sucking

Honeydew & sooty mold

NC COOPERATIVE EXTENSION

Aphids on Vegetables

Hosts

• Brassicas, curcurbits, legumes, Solanaceous crops, etc.

Signs & Symptoms

- Infestations, cast skins
- Growth distortions, stunting
- Honeydew & sooty mold

Management

- Natural enemies
- Water
- Insecticidal soap

NC COOPERATIVE Stink Bugs (Hemiptera: Pentatomidae)

Green Stink Bug

Chinavia hilaris

Leaf-footed Bug Leptoglossus phyllopus

NC COOPERATIVE EXTENSION

Stink Bugs (Hemiptera: Pentatomidae)

Hosts

• Many fruiting vegetables, leafy greens

Signs & Symptoms

- Cloudy spots on fleshy fruits
- Wart-like growths on beans and okra
- Stippling/yellowing of leaves

Management

- Monitor and handpick
- Insecticidal soap (nymphs)
- Row covers
- Kaolin clay

Caterpillar Pests of Tomatoes

Hornworms

Manduca sexta, M. quinquemaculata

Tomato Fruitworm

Helicoverpa zea

NC COOPERATIVE EXTENSION

Hornworms & Fruitworms

Hosts

• Tomatoes & other Solanaceous crops; corn, beans, okra, cotton

Signs & Symptoms

- Defoliation (hornworms)
- Fruit chewing damage
 - Usually on stem end (fruitworms)

Management

- Handpick + a brick
- Bt kurstaki
- Support natural enemies

Two Spotted Spider Mite

Tetranychus urticae

Two Spotted Spider Mite

Tetranychus urticae

Colorado Potato Beetle

(Chrysomelidae: Leptinotarsa decemlineata)

Colorado Potato Beetle

(Chrysomelidae: Leptinotarsa decemlineata)

Hosts

• Potatoes, Eggplant, Tomato, Solanum spp.

Signs & Symptoms

- Chewing damage on leaves
- Defoliation
- Larvae and adults

Management

- Handpicking
- Spinosad
- Azadirachtin
- Bt tenebrionis

Need Help with Garden Problems?

Master Gardener | Chatham County

Plant Clinic: MW 1:00-4:00, F 9:00-12:00 <u>chathamemgv@gmail.com</u> 919-545-2715 (Except during COVID-19, email is preferred)

NC EXTENSION Send us your (plant) problems!

Questions we may ask:

- Crop and cultivar
- Describe signs and symptoms
 - Include photos!
- When you started noticing problems
- Cultural conditions
 - Light, soil, water, planting time etc.

Send Us Good Photos!

Photos should:

- Include healthy and unhealthy parts
- Have a scale object
- Be in focus
- Show an up-close image
- Show the whole plant
- The more, the better

Diagnosis: cataracts?

Subscribe to the Chatham Gardener Newsletter

Chatham Gardener email list

- Sustainable gardening information
- Monthly email updates
- What to plant, pest alerts, timely tips
- Upcoming classes and events

To subscribe: https://go.ncsu.edu/chatham-newsletter

Questions from this class?

Matt Jones

matt_jones@ncsu.edu 919-542-8243

Please complete the evaluation! Leave it on the table

